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Construction of affine zippers

Affine zippers satisfying dominated splitting of index-1

A system S = {f0, . . . , fN−1} of contracting affine mappings of Rd to itself of the
form fi(x) = Aix + ti is called an affine zipper with vertices Z = {z0, . . . , zN} and
signature ε = (ε0, . . . , εN−1), εi ∈ {0, 1}, if the cross condition is satisfied, i.e. ,

fi(z0) = zi+εi and fi(zN) = zi+1−εi for any i = 0, . . . , N − 1.
An affine fractal curve is the unique non-empty compact set Γ, for which

Γ = f0(Γ) ⋃ f1(Γ) ⋃ . . . ⋃ fN−1(Γ).
Subdivide the [0, 1] interval according to a probability vector (λ0, . . . , λN−1). A linear
parametrization of Γ is the unique continuous function v : [0, 1] 7→ Γ defined by

v(x) = fi
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(−1)εiλi
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j=0λj
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We study the local regularity of v(x), provided the matrices Ai satisfy the following:

We assume that the matrices {A0, . . . , AN−1} have dominated splitting of index-1,
i.e. there exists a non-empty subset M ⊂ PRd−1 with a finite number of connected
components, whose closures are pairwise disjoint such that

N−1⋃
i=0

AiM ⊂M o,

and there is a d− 1-plane that is transverse to all elements of M .
Assumption A: IfM can be chosen to be a convex, simply connected cone C such that
•< zN − z0 >∈ C and for every 0 6= v ∈ C, 〈Aiv, v〉 > 0,
• S satisfies the SOSC w.r.t. the bounded component of Co(z0) ∩ Co(zN) =: U .
That is, fi(U) ⊆ U for every i = 0, . . . , N − 1

fi(U) ∩ fj(U) = ∅ if i 6= j and fi(U) ∩ fj(U) =

∅ if |i− j| > 1
{zi+1} if j = i + 1.

Special examples
• All entries of Ai are strictly positive, then the positive quadrant is mapped into itself.
• de Rham’s curve. Construction goes as follows:

• Start from a square and trisect each side with ratios ω : (1− 2ω) : ω (ω ∈ (0, 1/2)),
• "Cut the corners" by connecting adjacent partitioning points and repeat.

In the figure below d = 2 and N = 2, 3, 4, respectively. It shows the first (red), second
(green) and third (black) level cylinders of the image of [0, 1]2.

Pointwise Hölder exponent

Let g : [0, 1] → Rd be a continuous function. Then for every x ∈ (0, 1) the following
definitions are equivalent

α1(x) = lim inf
y→x

log |g(x)− g(y)|
log |x− y|

,

α2(x) = sup
α : ∀ρ > 0, sup

y∈Bρ(x)

|g(x)− g(y)|
|x− y|α

<∞
,

α3(x) = sup
α : ∃C > 0, |g(x)− g(y)| ≤ C · |x− y|α ∀y ∈ [0, 1]

.

We call the common value the pointwise Hölder exponent and denote it by α(x) .
If the lim inf in α1(x) coincides with the lim sup for a function g : [0, 1]→ Rd at x, we
say it has regular pointwise Hölder exponent and denote this common limit by αr(x) .
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Main results

Denote by P (t) the pressure function which is defined as the unique root of the equation

0 = lim
n→∞

1
n

log ΣN−1
i1,...,in=0‖Ai1 · · ·Ain‖t (λi1 · · ·λin)

−P (t) .

Let d0 > 0 be the unique real number such that

0 = lim
n→∞

1
n

log ΣN−1
i1,...,in=0‖Ai1 · · ·Ain‖d0.

Since S defines a curve, d0 ≥ 1. Let

αmin = lim
t→∞

P (t)
t
, αmax = lim

t→−∞
P (t)
t

and α̂ = P ′(0).

Theorem: Multifractal analysis of α(x) and αr(x)

Assume dominated splitting of index-1. Then there exists a constant α̂ such that for
L-a.e. x ∈ [0, 1], α(x) = α̂ ≥ 1/d0. Moreover, ∃ ε > 0 s. t. for every β ∈ [α̂, α̂ + ε]

dimH {x ∈ [0, 1] : α(x) = β} = inf
t∈R
{tβ − P (t)}.

Assumption A holds if and only if for L-a.e. x, αr(x) exists.
In this case, for L-a.e. x ∈ [0, 1], αr(x) = α(x) = α̂ ≥ 1 and the multifractal analysis
holds for the full spectrum, i.e. for every β ∈ [αmin, αmax]

dimH {x ∈ [0, 1] : α(x) = β} = dimH {x ∈ [0, 1] : αr(x) = β} = inf
t
{tβ − P (t)}.

In each case, the functions β 7→ dimH E(β) and β 7→ dimH Er(β) are continuous and
concave on their respective domains, where Er(β) = {x ∈ [0, 1] : αr(x) = β}.

Properties of the matrix pressure function

Extension of results of Feng-Lau for matrices with strictly positive entries to family of
matrices with dominated splitting of index-1 using work of Bochi-Gourmelon.
• The map t 7→ P (t) exists and it is monotone increasing, concave and continuously
differentiable for every t ∈ R.

• Existence of Gibbs-measure: for every t ∈ R there exists a unique ergodic, left-shift
invariant Gibbs measure µt on Σ = {0, . . . , N − 1}N s. t. ∃C > 0 that for any
(i1, . . . , in) ∈ {0, . . . , N − 1}∗

C−1 ≤ µt([i1, . . . , in])
‖Ai|n|E(σni)‖t · λ−P (t)

i|n
≤ C.

Furthermore, for every t ∈ R
dimH µt = tP ′(t)− P (t),

and
lim
n→∞

log ‖Ai1 · · ·Ain‖1

−n logN
= P ′(t) for µt-almost every i ∈ Σ.

• Pressure for t = 0 and t = 1. P (0) = −1, P (d0) = 0, P ′(0) ≥ 1/d0, P ′(d0) ≤ 1/d0.
P ′(0) > 1/d0 ⇐⇒ P ′(d0) < 1/d0 ⇐⇒ µd0 6= µ0.

Matrices with strictly positive entries
• A measure on Σ: Define ν on the cylinder sets [i|n] = ⋃

j∈Σ(i1, . . . , in, j) of Σ as follows
ν[i|n] = pTAi|ne = pTAi1 . . . Aine for every i ∈ Σ,

where p is the left normalized eigenvector of ΣN−1
i=1 Ai corresponding to largest

eigenvalue and e = (1, . . . , 1)T .
ν uniquely extends to a σ-invariant, ergodic and mixing probability measure on Σ.

• In particular, d0 = 1. Hence, from the Gibbs property it follows that µ0 = P is the
equidistributed measure and µd0 = µ1 = ν. Therefore,

ν = P⇐⇒ P (t) = t− 1 for t ∈ [0, 1].
• These give lower and upper bounds on P (t) (shaded green below left) which in turn,
after taking the Legendre transform, give bounds for dimH Er(α) (shaded green on
right).

Corollaries

• If ν 6= P, then the set N ⊆ [0, 1] where the curve v is not differentiable has positive
Hausdorff dimension. Moreover, for L-a.e. x ∈ [0, 1] : αr(x) = α̂ > 1. In
particular, v is differentiable at Lebesgue-almost every point with derivative zero.

• Push forward measures: If ν[i|n] = N−n for every i ∈ Σ, then
dimH π∗P = 1/P ′(0) = 1. Otherwise, if ν 6= P, then dimH π∗P < 1.

• On the other hand dimH π∗ν = 1 always holds. Furthermore, dimH v([0, 1]) = 1.


