

Local Regularity of Affine Zipper Fractal Curves

István Kolossváry, joint with Balázs Bárány and Gergely Kiss Alfréd Rényi Institute of Mathematics

Construction of affine zippers

Affine zippers satisfying dominated splitting of index-1

A system $\mathcal{S} = \{f_0, \ldots, f_{N-1}\}$ of contracting affine mappings of \mathbb{R}^d to itself of the form $f_i(\underline{x}) = A_i \underline{x} + t_i$ is called an affine zipper with vertices $Z = \{z_0, \ldots, z_N\}$ and signature $\varepsilon = (\varepsilon_0, \ldots, \varepsilon_{N-1}), \varepsilon_i \in \{0,1\}$, if the cross condition is satisfied, i.e.,

 $f_i(z_0) = z_{i+\varepsilon_i}$ and $f_i(z_N) = z_{i+1-\varepsilon_i}$ for any $i = 0, \ldots, N-1$.

An affine fractal curve is the unique non-empty compact set Γ , for which

 $\Gamma = f_0(\Gamma) \cup f_1(\Gamma) \cup \ldots$ $\vert \ \ \vert$ $f_{N-1}(\Gamma)$.

Subdivide the $[0, 1]$ interval according to a probability vector $(\lambda_0, \ldots, \lambda_{N-1})$. A linear parametrization of Γ is the unique continuous function $v : [0,1] \mapsto \Gamma$ defined by

> $v(x) = f_i$ $\sqrt{ }$ $\vert v \vert$ $\sqrt{ }$ \parallel $x - \gamma_i$ \setminus $\begin{matrix} \end{matrix}$ \setminus \int if $x \in \left[\sum_{j=0}^{i-1} \lambda_j, \sum_{j=0}^{i} \lambda_j\right)$ *.*

We assume that the matrices $\{A_0, \ldots, A_{N-1}\}$ have dominated splitting of index-1, i.e. there exists a non-empty subset $M \subset \mathbb{PR}^{d-1}$ with a finite number of connected components, whose closures are pairwise disjoint such that

> $N-1$ *i*=0 $A_i\overline{M} \subset M^o$

and there is a *d* − 1-plane that is transverse to all elements of *M*. Assumption A: If *M* can be chosen to be a convex, simply connected cone *C* such that ■ $< z_N - z_0 >\in C$ and for every $\underline{0} \neq \underline{v} \in C$, $\langle A_i \underline{v}, \underline{v} \rangle > 0$,

■ *S* satisfies the SOSC w.r.t. the bounded component of $C^o(z_0) \cap C^o(z_N) =: U$. That is, $f_i(U) \subseteq U$ for every $i = 0, \ldots, N - 1$

 $f_i(U) \cap f_j(U) = \emptyset$ if $i \neq j$ and $f_i(\overline{U}) \cap f_j(\overline{U}) =$ $\sqrt{ }$ \int $\overline{\mathcal{L}}$ $|i - j| > 1$ if $j = i + 1$.

- All entries of A_i are strictly positive, then the positive quadrant is mapped into itself.
- de Rham's curve. Construction goes as follows:
- Start from a square and trisect each side with ratios ω : $(1-2\omega)$: ω $(\omega \in (0,1/2))$,
- "Cut the corners" by connecting adjacent partitioning points and repeat.

In the figure below $d = 2$ and $N = 2, 3, 4$, respectively. It shows the first (red), second (green) and third (black) level cylinders of the image of $[0,1]^2$.

 \mathcal{L} -a.e. $x\in[0,1]$, $\alpha(x)=\bar{\alpha}\geq 1/d_0.$ Moreover, $\exists\,\varepsilon>0$ s. t. for every $\beta\in[\bar{\alpha},\bar{\alpha}+\varepsilon]$ dim_{*H*} $\{x \in [0,1]: \alpha(x) = \beta\} = \inf_{t \in \mathbb{R}}$ *t*∈R $\{t\beta-P(t)\}.$

Let $g:[0,1]\to\mathbb{R}^d$ be a continuous function. Then for every $x\in(0,1)$ the following definitions are equivalent

D.-J. Feng and K.-S. Lau. The pressure function for products of non-negative matrices. Math. Research Letter, (9):363–378, 2002.

Special examples

Assumption A holds if and only if for L-a.e. *x*, *αr*(*x*) exists. In this case, for \mathcal{L} -a.e. $x \in [0,1]$, $\alpha_r(x) = \alpha(x) = \overline{\alpha} \geq 1$ and the multifractal analysis holds for the full spectrum, i.e. for every $\beta \in [\alpha_{\min}, \alpha_{\max}]$

dim_{*H*} { $x \in [0, 1]: \alpha(x) = \beta$ } = dim_{*H*} { $x \in [0, 1]: \alpha_r(x) = \beta$ } = inf *t* $\{t\beta-P(t)\}.$

In each case, the functions $\beta \mapsto \dim_H E(\beta)$ and $\beta \mapsto \dim_H E_r(\beta)$ are continuous and concave on their respective domains, where $E_r(\beta) = \{x \in [0,1] : \alpha_r(x) = \beta\}$.

Pointwise Hölder exponent

$$
\alpha_1(x) = \liminf_{y \to x} \frac{\log |g(x) - g(y)|}{\log |x - y|},
$$

\n
$$
\alpha_2(x) = \sup \left\{ \alpha : \forall \rho > 0, \sup_{y \in B_{\rho}(x)} \frac{|g(x) - g(y)|}{|x - y|^{\alpha}} < \infty \right\},\
$$

\n
$$
\alpha_3(x) = \sup \left\{ \alpha : \exists C > 0, \ |g(x) - g(y)| \le C \cdot |x - y|^{\alpha} \ \forall y \in [0, 1] \right\}.
$$

We call the common value the pointwise Hölder exponent and denote it by $\alpha(x)$. If the \liminf in $\alpha_1(x)$ coincides with the \limsup for a function $g:[0,1]\to\mathbb{R}^d$ at x , we Furthermore, for every $t \in \mathbb{R}$

• A measure on Σ: Define *ν* on the cylinder sets [**i**|*n*] = U $\mathbf{j}\in\Sigma(i_1,\ldots,i_n,\mathbf{j})$ of Σ as follows $\nu[\mathbf{i}|n] = p^TA_{\mathbf{i}|n}e = p^TA_{i_1}\ldots A_{i_n}e$ for every $\mathbf{i}\in\Sigma,$

where p is the left normalized eigenvector of $\Sigma_{i=1}^{N-1}A_i$ corresponding to largest eigenvalue and $e = (1, \ldots, 1)^T$.

References

I.K., B.B. and G.K. On the local Hölder exponent of de Rham like fractal curves. Preprint, 2014.

ν uniquely extends to a *σ*-invariant, ergodic and mixing probability measure on Σ. • In particular, $d_0 = 1$. Hence, from the Gibbs property it follows that $\mu_0 = \mathbb{P}$ is the equidistributed measure and $\mu_{d_0} = \mu_1 = \nu$. Therefore,

 $\nu = \mathbb{P} \Longleftrightarrow P(t) = t - 1$ for $t \in [0, 1]$ *.*

J. Bochi and N. Gourmelon, Some characterizations of domination. Mathematische Zeitschrift, 263(1):221–231, 2009.

P. Nikitin. The hausdorff dimension of the harmonic measure on de Rham's curve. Journal of Mathematical Sciences, 121(3):2409–2418, 2004.

V. Y. Protasov. Fractal curves and wavelets. Izvestiya: Mathematics, 70(5):975, 2006.

Prepared for the Workshop on Fractal Geometry, Hyperbolic Dynamics and Thermodynamical Formalism, at ICERM Brown University. March 2016. K.I. was supported by the Hungarian National Eötvös Scholarship.

Main results

Denote by $P(t)$ the pressure function which is defined as the unique root of the equation $0 = \lim_{n \to \infty}$ $n\rightarrow\infty$ 1 *n* $\log \Sigma_{i_1,...,i_n=0}^{N-1} \|A_{i_1} \cdots A_{i_n}\|^{t} \left(\lambda_{i_1} \cdots \lambda_{i_n}\right)^{-P(t)}.$ Let $d_0 > 0$ be the unique real number such that $0 = \lim_{n \to \infty}$ $n\rightarrow\infty$ 1 *n* $\log \Sigma_{i_1,...,i_n=0}^{N-1} \|A_{i_1} \cdots A_{i_n}\|^{d_0}.$ Since S defines a curve, $d_0 \geq 1$. Let $\alpha_{\min} = \lim_{t \to \infty}$ *t*→∞ *P*(*t*) *t ,* $\alpha_{\text{max}} = \lim_{t \to -\infty}$ *t*→−∞ *P*(*t*) *t* and $\bar{\alpha} = P'(0)$.

Theorem: Multifractal analysis of $\alpha(x)$ and $\alpha_r(x)$

Assume dominated splitting of index-1. Then there exists a constant α such that for

$(-1)^{\varepsilon_i}\lambda_i$

We study the local regularity of $v(x)$, provided the matrices A_i satisfy the following:

Properties of the matrix pressure function

Extension of results of Feng-Lau for matrices with strictly positive entries to family of matrices with dominated splitting of index-1 using work of Bochi-Gourmelon.

- The map $t \mapsto P(t)$ exists and it is monotone increasing, concave and continuously differentiable for every $t \in \mathbb{R}$.
- Existence of Gibbs-measure: for every $t\in\mathbb{R}$ there exists a unique ergodic, left-shift invariant Gibbs measure μ_t on $\Sigma = \{0, \ldots, N-1\}$ N s. t. $\exists\, C>0$ that for any $(i_1, \ldots, i_n) \in \{0, \ldots, N-1\}^*$

$$
C^{-1} \leq \frac{\mu_t([i_1,\ldots,i_n])}{\|A_{\mathbf{i}|n}|E(\sigma^n\mathbf{i})\|^{t} \cdot \lambda_{\mathbf{i}|n}^{-P(t)}} \leq C.
$$

$$
\dim_H \mu_t = tP'(t) - P(t),
$$

and

$$
\lim_{n \to \infty} \frac{\log ||A_{i_1} \cdots A_{i_n}||_1}{-n \log N} = P'(t) \text{ for } \mu_t\text{-almost every } \mathbf{i} \in \Sigma.
$$
\n• Pressure for $t = 0$ and $t = 1$. $P(0) = -1$, $P(d_0) = 0$, $P'(0) \ge 1/d_0$, $P'(d_0) \le 1/d_0$.

\n
$$
P'(0) > 1/d_0 \Longleftrightarrow P'(d_0) < 1/d_0 \Longleftrightarrow \mu_{d_0} \ne \mu_0.
$$

Matrices with strictly positive entries

• These give lower and upper bounds on *P*(*t*) (shaded green below left) which in turn, after taking the Legendre transform, give bounds for $\dim_H E_r(\alpha)$ (shaded green on right).

Corollaries

• If $\nu\neq \mathbb{P}$, then the set $\mathcal{N}\subseteq [0,1]$ where the curve v is not differentiable has positive Hausdorff dimension. Moreover, for \mathcal{L} -a.e. $x \in [0,1] : \alpha_r(x) = \overline{\alpha} > 1$. In particular, *v* is differentiable at Lebesgue-almost every point with derivative zero. • Push forward measures: If *ν*[**i**|*n*] = *N*[−]*ⁿ* for every **i** ∈ Σ, then $\dim_H \pi_*\mathbb{P} = 1/P'(0) = 1$. Otherwise, if $\nu \neq \mathbb{P}$, then $\dim_H \pi_*\mathbb{P} < 1$. • On the other hand $\dim_H \pi_* \nu = 1$ always holds. Furthermore, $\dim_H v([0,1]) = 1$.