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Abstract. The limiting distribution of the greatest common divisor (gcd) of a D-tuple of
random natural numbers is known. We generalise this by determining an in�nite product
representation for the joint distribution of gcd-s in a D-dimensional hypercube of �xed but
arbitrary side length around a D-tuple of random natural numbers. This allows for calculation
of any statistic of the gcd-s within this hypercube, such as the number of coprime D-tuples.

1. Introduction and main results

Using the unique prime factorisation of each natural number N =
∏
p∈P p

νp(N), where P
denotes the set of primes and νp(N) is the p-adic valuation of N , the greatest common divisor

(gcd) of a D-tuple of strictly positive integers N1, . . . , ND is

gcd(N1, . . . , ND) :=
∏
p∈P

pmin1≤j≤D νp(Nj).

For brevity, we denote a D-tuple by ND := (N1, . . . , ND) moreover, multiplication by a scalar
c ·ND = (c ·N1, . . . , c ·ND) and addition ND + j = (N1 + j1, . . . , ND + jD) are done coordinate-
wise. It is well-known that the limiting density of coprime pairs, i.e. when gcd(N1, N2) = 1,
usually attributed to Dirichlet [3], is

lim
n→∞

1

n2
#
{
(N1, N2) ∈ {1, . . . , n}2 : gcd(N1, N2) = 1

}
=

6

π2
=

1

ζ(2)
. (1.1)

Recall the Riemann zeta function ζ(s) and Euler's product formula

ζ(s) :=
∞∑
k=1

1

ks
=
∏
p∈P

(1− p−s)−1

for <(s) > 1. The limit in (1.1) has since initiated an abundance of research. Most notably for
the purpose of this paper, the limiting distribution of gcd(ND) taking any value a is

lim
n→∞

1

nD
#
{
ND ∈ {1, . . . , n}D : gcd(ND) = a

}
=

1

aD · ζ(D)
. (1.2)

This already appears in the work of Cesàro [1] and also follows from the more general setting
of Chidambaraswamy and Sitaramachandrarao [2], who also gave bounds on the error. For a
comprehensive list of references in the area, see the survey [4].

One natural direction for generalisation is to consider the joint distribution of gcd-s in a
`window' around the point ND. Very recently, for D = 2, Fernández and Fernández [5] consider
anM×M square (N1+j1, N2+j2)

M
j1,j2=1 as the `window'and determine the limiting distribution

of the function counting the number of coprime pairs in a random M ×M square. Knowledge of
the joint distribution of gcd-s would already imply the distribution of coprime pairs. The main
objective of the current paper is to determine the limiting joint distribution of gcd-s in random
MD-hypercubes, thus generalising all aforementioned results.
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Formally, letM be a strictly positive integer and ND be a D-tuple of strictly positive integers.
We consider the `window' WD

M := {0, 1, . . . ,M − 1}D around ND and the MD-array of gcd-s

GCDM (ND) :=
(
gcd(ND + j)

)
j∈WD

M

derived from it. Let

ADM :=
{
A ∈ NM

D
: (∃ND ∈ ND), GCDM (ND) = A

}
denote the set ofMD-arrays which can be attained. Thus the goal of the paper is to characterise
the set ADM and establish that the limit

lim
n→∞

1

nD
#
{
ND ∈ {1, . . . , n}D : GCDM (ND) = A

}
(1.3)

exists, moreover, determine its value for all A ∈ ADM .

Throughout, we adopt a probabilistic formulation of the problem. LetN
(n)
D = (N

(n)
1 , . . . , N

(n)
D )

denote a D-tuple of independent random variables all chosen uniformly from the set Nn :=
{1, . . . , n}. Furthermore, let Pn denote the uniform distribution on NDn , i.e. Pn(E) = #E/nD

for any E ⊆ NDn . With this notation, the limit (1.3) can be rewritten as

lim
n→∞

Pn

(
GCDM (N

(n)
D ) = A

)
.

1.1. Main results. Before stating the main results, we introduce some notation. For anym ∈ N,
let Pm := {p ∈ P : p ≤ m}. Occasionally, we index an MD-array A = (aj)j∈WD

M
∈ NMD

simply

with a ∈ A. Let
P(A) :=

{
p ∈ P : (∃a ∈ A), p | a

}
denote the set of all primes which divide some element of A. For each p ∈ P(A) de�ne

TA(p) := max{t ∈ N : (∃a ∈ A), pt | a}.

It can be considered as the `p-adic valuation of A'. Also introduce the set of indices

JA(p) :=
{
j ∈ WD

M : pTA(P ) | aj
}
.

A trivial observation is that if A ∈ ADM , then

#
(
JA(p) ∩ {0, 1, . . . ,min{pTA(p) − 1,M − 1}}D

)
= 1 (1.4)

for each p ∈ P(A) simply because in each coordinate of a gcd array we take consecutive numbers

and pTA(p) divides exactly one of min{pTA(p),M} consecutive numbers. Throughout, if (1.4)
holds, then this unique index is denoted by jA(p). It is the `origin' of the grid

GA(p) := {jA(p) + pTA(p) · ZD} ∩WD
M .

Note that if jA(p)+p
TA(p)·z ∈ GA(p), then in fact all coordinates of z are from the set {0, 1, . . . , p−

1}. More precisely, there must exist a coordinate 1 ≤ dA(p) ≤ D such that

(jA(p))dA(p) + (p− 1)pTA(p) ≥M, (1.5)

otherwise, TA(p) would not be maximal. This implies that #GA(p) ≤ (p− 1) · pD−1 < pD. The
sets P(A) and {(TA(p), jA(p),GA(p)) : p ∈ P(A)} are deterministic functions of A ∈ ADM . Some

immediate observations are that M < minp∈P(A) p
TA(p)+1 since TA(p) is maximal, furthermore,

if M ≤ pTA(p) then GA(p) = {jA(p)}.
Any A ∈ ADM has a very particular structure with respect to how each p ∈ P(A) divides the

elements of A. For each k ∈ WD
M we de�ne

RA,p(k) := max{r ∈ {0, 1, . . .} : (∃z ∈ ZD), k = jA(p) + pr · z}.

Observe that if A ∈ ADM , then RA,p(k) ≤ TA(p) with equality if and only if k ∈ GA(p), in fact
JA(p) = GA(p). We say that p ∈ P(A) divides A properly if

(1.4) and (1.5) hold, moreover, νp(ak) = RA,p(k) for every k ∈ WD
M .



LIMITING DISTRIBUTION OF GCD-S IN RANDOM HYPERCUBES 3

See Figure 1 for an illustration of the introduced notions and also § 3.1 for some concrete examples
of gcd arrays. We are now ready to state our main results.



0 1 p
T
A

(p
)
−
1

M
−
1

0
1 + + jA(p) + + � +

+ + + + + + +

+ + + + + + +
pTA(p)−1 ·

+ + � + + � +

+ + + + + + +

+ + + + + + +

M−1 + + � + + � +


Figure 1. An illustration of the notion that p divides A properly. Here we chose
D = 2, M = 20, p = 3, TA(p) = 2 and jA(p) = (1, 6). Indices labeled by � and
jA(p) are the elements of GA(p), the corresponding elements of A have 3-adic
valuation equal to 2, while the ones marked with + have 3-adic valuation equal
to 1 and the rest are not divisible by 3.

Proposition 1.1. An MD-array A is an element of ADM if and only if PM ⊆ P(A) and p divides

A properly for every p ∈ P(A).

Theorem 1.2. Assume A ∈ ADM . Then

lim
n→∞

Pn

(
GCDM (N

(n)
D ) = A

)
=

∏
p∈P(A)

1

pTA(p)·D

(
1− #GA(p)

pD

) ∏
p/∈P(A)

(
1−

(M
p

)D)
> 0.

Remark 1.3. Any attainable MD-array has strictly positive density. The formula for M = 1
readily simpli�es to (aD · ζ(D))−1 in (1.2). The formula also naturally encodes conditions (1.5)
and PM ⊆ P(A). Indeed, if (1.5) does not hold for some p, then #GA(p) ≥ pD resulting in

1−#GA(p)/pD ≤ 0. Similarly, if PM \P(A) 6= ∅, then 1− (M/p)D ≤ 0 for any p ∈ PM \P(A).

The proofs are in § 2. The proof of Theorem 1.2 builds on arguments of a previous work of
the author [6]. The advantage of the argument is that it is short and completely elementary,
but it does not give estimates on the rate of convergence. A natural line of further study would
be to give bounds on the error. Other directions to pursue could be to consider more general
`windows'. The �shape� of the `window' need not be a hypercube or instead of evaluating the
gcd of consecutive numbers one could rather take the value of non-constant polynomials with
integer coe�cients like in [2]. Instead of taking the limit of the uniform distribution, one could
also consider di�erent probabilities, see [4, § 1.3.]. Section 3 contains some further discussion.

1.2. Applications. Theorem 1.2 naturally de�nes a random variable Z∞ = Z∞(M,D) on ADM
with probability distribution given by

P(Z∞ = A) :=
∏

p∈P(A)

1

pTA(p)·D

(
1− #GA(p)

pD

) ∏
p/∈P(A)

(
1−

(M
p

)D)
.
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A reformulation of Theorem 1.2 is that the random variable GCDM (N
(n)
D ) tends in distribution

to Z∞ as n → ∞. With knowledge of the precise distribution of Z∞, at least in principle it
is possible to determine the probability of any subset E ⊆ ADM simply by evaluating the sum∑

A∈E P(Z∞ = A). In particular,

ZDM (A) := #
{
a ∈ A : a = 1

}
counts the number of 1 entries in the array A, hence, ZDM

(
GCDM (ND)

)
counts the number of

(fully) coprime D-tuples in the window starting at ND. Theorem 1.2 immediately implies the
following.

Corollary 1.4. For any r ∈ {0, 1, . . . ,MD},

lim
n→∞

Pn

(
ZDM
(
GCDM (N

(n)
D )
)
= r
)
=

∑
A∈AD

M

ZD
M (A)=r

P(Z∞ = A).

Therefore, our work also generalises [5], since it corresponds to the special case D = 2. Their
proof is also probabilistic in nature, though very distinct from ours. In fact, their formula is a
�nite sum, which makes it more convenient for calculations, see § 3 for further discussion.

Equally straightforward, at least in principle, is to determine the expectation of some real
valued function of Z∞. For example, let

Ât :=
1

MD

∑
a∈A

at

be the average of the sum of the t-th powers of the elements of A ∈ ADM for some t ≥ 1.

Corollary 1.5. Assume f : ADM → R. Then

Ef(Z∞) =
∑

A∈AD
M

f(A) ·P(Z∞ = A).

In particular, E Ẑt∞ =∞ if and only if t ≥ D − 1 irrespective of M .

Proof. The formula for Ef(Z∞) is just the de�nition of expectation. Assume 1 ≤ t < D − 1.

Using that maxa∈A a ≤
∏
p∈P(A) p

TA(p) and 1 ≤ min{GA(p),M}, we can bound

E Ẑt∞ ≤
∑

A∈AD
M

∏
p∈P(A)

pTA(p)(t−D)
∏
p∈P

(
1− 1

pD

)

=
1

ζ(D)

∞∑
k=2

#
{
A ∈ ADM :

∏
p∈P(A)

pTA(p) = k
}
· kt−D.

Recall that the prime omega function ω(k) ≤ log log k + B1 + O((log k)−1) for almost all in-
tegers k, where B1 is the Mertens constant. This together with the observation that the pairs
{(jA(p), TA(p)) : p ∈ P(A)} determine A gives the bound

#
{
A ∈ ADM :

∏
p∈P(A)

pTA(p) = k
}
≤ O

(
MD log log k

)
= O

(
(log k)D logM

)
for almost all integers k. Finiteness of E Ẑt∞ now follows by the choice of t.

Now assume t ≥ D − 1. Since 1 ≤ #GA(p) ≤ (p − 1) · pD−1, #GA(p) = 1 for all p ≥ M and
D ≥ 2, there exists C0 = C0(M,D) > 0 such that∏

p∈P(A)

(
1− #GA(p)

pD

) ∏
p/∈P(A)

(
1−

(M
p

)D)
≥
( ∏
p≤M

1

p

)
·
∏
p>M

(
1−

(M
p

)D)
≥ C0.
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For each m > M , we de�ne B(m) = (b
(m)
j )j∈WD

M
as follows. Let b

(m)
0 := m ·

∏
p∈PM\P(m) p and

continue `�lling out' B(m) so that each p ∈ PM ∪P(m) divides B(m) properly. By Proposition 1.1

we have that B(m) ∈ ADM . We use that
∑

b∈B(m) bt ≥ mD−1; TA(p) = 1 for each p ≥ M and
TA(p) ≤ log2M for every p < M in order to bound

E Ẑt∞ ≥
∞∑
m=1

∑
b∈B(m) bt

MD
·P(Z∞ = B(m)) ≥ C0

MD

∞∑
m=1

mD−1

mD
∏
p∈PM

pD·log2M
=∞.

�

2. Proofs

We prove Proposition 1.1 and Theorem 1.2 in separate subsections. In this section we use
ND (mod p) = j to abbreviate `Nk (mod p) = jk for every 1 ≤ k ≤ D' or ND (mod p) ∈ E1 ×
. . .× ED for `Nk (mod p) ∈ Ek for every 1 ≤ k ≤ D'.

2.1. Proof of Proposition 1.1. Fix A ∈ ADM , i.e. there exists a D-tuple ND such that
GCDM (ND) = A. Trivially PM ⊆ P(A) since for every p ∈ PM there must exist an index
k(p) ∈ WD

M such that p | ak(p)). Fix arbitrary p ∈ P(A). Condition (1.4) trivially holds. It is

also clear that (1.5) is a necessary condition, otherwise, there would exist an index k ∈ WD
M such

that νp(gcd(ND + k)) > TA(p) which contradicts the maximality of TA(p). It remains to show
that νp(ak) = RA,p(k) for every k ∈ WD

M . The prime p de�nes the triplet (TA(p), jA(p),GA(p)),
in particular, by de�nition νp(ajA(p)) = TA(p). The index jA(p) can be thought of as the `origin'

of grids GtA(p) := {jA(p) + pt · ZD} ∩ WD
M for all t ≤ TA(p) in the sense that pt | ND + k for

all k ∈ GtA(p) and as a result pt | ak. For each k ∈ WD
M , we de�ned RA,p(k) to be precisely the

largest exponent t such that k ∈ GtA(p). Therefore, νp(ak) = RA,p(k) for every k ∈ WD
M .

In the other direction, if A ∈ NMD
is such that PM ⊆ P(A) and every p ∈ P(A) divides

A properly, then we construct a D-tuple ND using the Chinese remainder theorem such that
GCDM (ND) = A. For each p ∈ P(A), the index jA(p) is de�ned by (1.4) while the coordinate
dA(p) is de�ned by (1.5). We set up the system of congruences by considering{

xdA(p) +
(
jA(p)

)
dA(p)

≡ pTA(p) (mod pTA(p)+1);

xd +
(
jA(p)

)
d

≡ 0 (mod pTA(p)) for every d 6= dA(p).

This ensures that for each k ∈ GA(p) and any x = (x1, . . . , xD) satisfying these congruences,

we have that νp
(
gcd(xD + k)

)
= TA(p). (Taking simply x ≡ −jA(p) (mod pTA(p)) is not su�-

cient.) Considering these congruences simultaneously for all p ∈ P(A) gives a system of con-
gruences for each element xd of the D-tuple x. We may now apply the Chinese remainder
theorem to each xd to obtain a D-tuple ND with elements 1 ≤ Nd ≤

∏
p∈P(A) p

TA(p)+1. If

P(GCDM (ND)) = P(A), then by construction GCDM (ND) = A and we are done. However,
the construction may have resulted in an ND such that P(GCDM (ND)) ⊃ P(A). In such a
case, for each p ∈ P(GCDM (ND)) \ P(A), we can add the congruence x1 ≡ kp (mod p) with
kp ∈ {1, 2, . . . , p−M} and get a new N ′1 with the Chinese remainder theorem. This ensures that
p /∈ P(GCDM (N ′1, N2, . . . , ND)). If P(GCDM (N ′1, N2, . . . , ND)) = P(A), then the procedure
terminates, otherwise one can change the value of kp or add new congruences and repeat. The
procedure will terminate because the density of integers not divisible by any prime not in P(A)
is at least

∏
p>M (1 − (M/p)D) > 0. See § 3.1 for two concrete examples of arrays A for which

we �nd an appropriate ND.

2.2. Proof of Theorem 1.2. The proof relies on the idea that `divisibility by distinct primes are
(asymptotically) independent events'. The Chinese remainder theorem implies that for distinct
primes p and q the map {

Z/pqZ −→ Z/pZ× Z/qZ
x 7→ (x (mod p), x (mod q))
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is a bijection. In particular, the random variables x 7→ x (mod p) and x 7→ x (mod q) are inde-
pendent on Z/pqZ. Ultimately this is what leads to the in�nite product representation of the
formula in Theorem 1.2.

Proposition 2.1. Fix D ≥ 1 and a �nite set Q of pairwise coprime integers. Let N
(n)
D be

a uniformly chosen random variable on the set NDn . Then as n → ∞, the random array(
N

(n)
D (mod q)

)
q∈Q tends in distribution to an array of independent and uniform random variables

on the space
∏
q∈Q ZD/qZD.

Proof. For D = 1 this can be found in for example [7, Proposition 1.3.7.]. It naturally generalises

to D-tuples since the elements of N
(n)
D are independent. �

A typical application of Proposition 2.1 is that if Q = {q} and Z ⊆ ZD/qZD, then

lim
n→∞

Pn

(
N

(n)
D (mod q) ∈ Z

)
=

#Z

qD
. (2.1)

The next lemma explains why the di�erent terms in the formula of Theorem 1.2 appear.

Lemma 2.2. Let N
(n)
D be a uniformly chosen random variable on the set NDn and assume A ∈

ADM . Then for p ∈ P,

lim
n→∞

Pn

(
N

(n)
D (mod p) ∈ {0, p− 1, . . . , p−M + 1}D

)
= min

{
MD/pD, 1

}
,

and for every p ∈ P(A),

lim
n→∞

Pn

(
(∀k ∈ GA(p)), νp(N(n)

D + k) = TA(p)
)
=

1

pTA(p)·D −
#GA(p)

p(TA(p)+1)·D .

Proof. The �rst claim is just a direct application of (2.1). It also shows why PM ⊆ P(A). As
for the second claim, let us introduce the events

E
(n)
A,p(t,k) := {ND ∈ NDn : pt | ND + k} and E

(n)
A,p(t,k) := {ND ∈ NDn : pt - ND + k}.

With this notation, {νp(N(n)
N +k) = TA(p)} = E

(n)
A,p(TA(p),k)∩E

(n)
A,p(TA(p)+1,k) for k ∈ GA(p).

As a result,

Pn

(
(∀k ∈ GA(p)), νp(N(n)

N + k) = TA(p)
)

= Pn

( ⋂
k∈GA(p)

E
(n)
A,p(TA(p),k) ∩ E

(n)
A,p(TA(p) + 1,k)

)

= Pn

(
E

(n)
A,p(TA(p), jA(p)) ∩

⋂
k∈GA(p)

E
(n)
A,p(TA(p) + 1,k)

)

= Pn

(
E

(n)
A,p(TA(p), jA(p))

)
−Pn

( ⋃
k∈GA(p)

E
(n)
A,p(TA(p) + 1,k)

)

= Pn

(
E

(n)
A,p(TA(p), jA(p))

)
−

∑
k∈GA(p)

Pn

(
E

(n)
A,p(TA(p) + 1,k)

)

→ 1

pTA(p)·D −
#GA(p)

p(TA(p)+1)·D

as n → ∞ by another simple application of (2.1). The second equality follows from the grid
structure of GA(p); the third one from De Morgan's law; and the fourth one holds because
of inclusion-exclusion since for any given ND there can be at most one k ∈ GA(p) for which

pTA(p)+1 | ND + k, i.e. the events EA,p(TA(p) + 1,k) are mutually exclusive for k ∈ GA(p). �
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Proof of Theorem 1.2. Let A ∈ ADM be �xed and introduce NA := {ND ∈ ND : GCDM (ND) =
A} 6= ∅. The goal is to determine the divisibility restrictions that A imposes on ND ∈ NA.
Recall that A uniquely determines the sets P(A) and {(TA(p), jA(p),GA(p)) : p ∈ P(A)}.

Let us begin with primes p /∈ P(A). Observe that p > M for all p /∈ P(A). If ND ∈ NA, then

p ∈ P(A) ⇐⇒ ND (mod p) ∈ {0, p− 1, . . . , p−M + 1}D. (2.2)

More interesting is when p ∈ P(A). If ND ∈ NA, then for every k ∈ WD
M ,

ak = gcd(ND + k) =
∏

p∈P(A)

pRA,p(k).

Furthermore, as discussed already in § 2.1, since p divides A properly, the condition νp(ND +
jA(p)) = TA(p) already implies that νp(ND + k) = RA,p(k) for all k ∈ WD

M \ GA(p), but
νp(ND + k) = TA(p) is not guaranteed for k ∈ GA(p). Therefore, ND ∈ NA must satisfy that

(∀p ∈ P(A)) (∀k ∈ GA(p)), νp(ND + k) = TA(p). (2.3)

Combining (2.2) and (2.3), we obtain for n > maxp∈P(A) p
TA(p) that the event{

GCDM (N
(n)
D ) = A

}
=
{
(∀p ∈ P(A)) (∀k ∈ GA(p)), νp(N(n)

D + k) = TA(p)
}

∩
{
(∀p /∈ P(A)), N(n)

D (mod p) ∈ {0, 1, . . . , p− 1}D \ {0, p− 1, . . . , p−M + 1}D
}
.

Notice that it is enough to take p ∈ Pn+M−1 \ P(A) in the second part because the condition
automatically holds for all p > n+M − 1.

For n ≥ L > maxp∈P(A) p
TA(p), let us introduce the event

EL(n) :=
{
(∀p ∈ P(A)) (∀k ∈ GA(p)), νp(N(n)

D + k) = TA(p)
}
∩{

(∀p ∈ PL+M−1 \ P(A)), N(n)
D (mod p) ∈ {0, 1, . . . , p− 1}D \ {0, p− 1, . . . , p−M + 1}D

}
.

Then En(n) =
{
GCDM (N

(n)
D ) = A

}
. We claim that

lim
n→∞

Pn

(
GCDM (N

(n)
D ) = A

)
= lim

L→∞
lim
n→∞

Pn(EL(n)).

Fix a large L and observe that the sequence (EL(n))n≥L as subsets of ND is non-decreasing,
i.e EL(n) ⊆ EL(n + 1). Hence, the set-theoretic limit EL := limn→∞EL(n) exists. Since
P(A)∪PL+M−1 \ P(A) is a �nite set, we can apply Proposition 2.1 and Lemma 2.2 to calculate
the limit

lim
n→∞

Pn(EL(n)) =
∏

p∈P(A)

1

pTA(p)·D

(
1− #GA(p)

pD

) ∏
p∈PL+M−1\P(A)

(
1−

(M
p

)D)
.

Letting L → ∞ gives precisely the formula in Theorem 1.2. For any n and L < n, we have
EL(n) ⊇ EL+1(n), which non-increasing property is passed onto the limit sequence (EL)L. As
a result, the set-theoretic limit E := limL→∞EL exists. Furthermore, En(n) ⊆ En+1(n+ 1), so
the limit limn→∞En(n) also exists and in fact is equal to E which concludes the proof. �

Remark 2.3. The same strategy could be used to prove the following simpler statement. For

any �nite subset PM ⊆ Q ⊂ P the limit

lim
n→∞

Pn(P(GCDM (N
(n)
D )) = Q) =

∏
p∈Q

min
{
(M/p)D, 1

} ∏
p/∈Q

(
1−

(M
p

)D)
> 0.

3. Further discussion

In this section we give additional context to our results by giving (non-)examples of gcd arrays
and looking more closely when the side-length of the `window' is 2 or 3.
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3.1. Examples and non-examples of gcd arrays. The following examples are clearly not
gcd arrays: [

1 1
1 1

]
,

[
2 2
1 1

]
,

6 1 2
1 1 1
2 1 2

 .
The �rst one because 2 /∈ P(A). The second one does not satisfy (1.4), so 2 does not divide A
properly. In the last one, 3 divides A properly, but 2 does not because (1.5) does not hold (one
of the four corners must be divisible by 4).

In contrast, the following 7× 7 array

A =



210 1 2 3 2 5 6
1 1 1 1 1 1 1
2 1 4 1 2 1 4
3 1 1 3 1 1 3
2 1 2 1 2 1 2
5 1 1 1 1 5 1
6 1 4 3 2 1 72


is an element of A2

7 due to Proposition 1.1 because P(A) = P7, moreover, all of 2, 3, 5, 7 divide
A properly. For p ∈ P(A) the triplet (TA(p), jA(p),GA(p)) is

p 2 3 5 7

TA(p) 3 2 1 1
jA(p) (6,6) (6,6) (0,0) (0,0)
GA(p) {(6, 6)} {(6, 6)} {(0, 0), (0, 5), (5, 0), (5, 5)} {(0, 0)}

Theorem 1.2 implies that

lim
n→∞

Pn

(
GCD7(N

(n)
2 ) = A

)
=

1− 4/52

(23 · 32 · 5 · 7)2
∏

p∈{2,3,7}

(
1− 1

p2

)∏
p>7

(
1− 72

p2

)
≈ 1.564× 10−8.

The procedure in § 2.1 readily gives the example GCD7((210, 2730)) = A.
Another 4× 4 example is

A =


3 25 1 2 · 33
112 1 1 1
1 2 71 2
3 1 1 3

 .
One can check that A ∈ A2

4 with P(A) = {2, 3, 11, 71}. Moreover, P(Z∞ = A) ≈ 2.02 × 10−15

and GCD4((637 791, 787 104)) = A.

3.2. Special case when M = 2. The formula in Theorem 1.2 simpli�es if we take the side-
length of the `window' to be 2. If A ∈ AD2 , then for every p ∈ P(A) there exists a unique index
k ∈ WD

2 such that p | ak, in fact k = jA(p). Therefore, #GA(p) = 1 for every p ∈ P(A), and as
a result, we obtain that

lim
n→∞

Pn

(
GCD2(N

(n)
D ) = A

)
=
∏
a∈A

1

aD

∏
p∈P(A)

(
1− 1

pD

) ∏
p/∈P(A)

(
1− 2D

pD

)
. (3.1)

For illustration, let us use this to determine the limiting densities of ZD2
(
GCD2(N

(n)
D )
)
in Co-

rollary 1.4 for the value of r = 2D − 1. An interesting corollary is that it allows for the explicit
calculation of some in�nite series.
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Proposition 3.1. Trivially, Pn

(
ZD2
(
GCD2(N

(n)
D )
)
= 2D

)
= 0 for all n ≥ 2. Moreover,

lim
n→∞

Pn

(
ZD2
(
GCD2(N

(n)
D )
)
= 2D − 1

)
=

∞∑
a=1

1

aD

∏
p | 2a

(
1− 1

pD

) ∏
p - 2a

(
1− 2D

pD

)

= 2D
∏
p∈P

(
1− 2D − 1

pD

)
.

Remark 3.2. For D = 2, the fact that the limit equals 4
∏
p∈P

(
1 − 3/p2

)
was already proved

in [5]. Their result can handle any value of r and M for D = 2. The proof we provide here is

more direct then theirs and with some care the inclusion-exclusion argument here could perhaps

be generalised to cover arbitrary r, M and D. Numerical values of the limit for increasing values

of D are

D 2 4 6 8 10

ZD2 = 2D − 1 0.50195 0.78874 0.90936 0.96046 0.98257

Proof. The reason why ZD2
(
GCD2(N

(n)
D )
)
< 2D is that there always exists an index k ∈ WD

2 such

that gcd(N
(n)
D +k) ≥ 2. If ZD2

(
GCD2(N

(n)
D )
)
= 2D−1, then there is precisely one such k ∈ WD

2 ,

moreover, gcd(N
(n)
D + k) = 2a for some a ∈ {1, 2, . . .}. Let Bk(a) denote the 2D-array such that

bk = 2a and all other entries are equal to 1. Then of course P(Bk(a)) = {p ∈ P : p | 2a}. It
follows from Corollary 1.4 and (3.1) that

lim
n→∞

Pn

(
ZD2
(
GCD2(N

(n)
D )
)
= 2D − 1

)
=
∞∑
a=1

∑
k∈WD

2

P(Z∞ = Bk(a))

= 2D
∞∑
a=1

1

(2a)D

∏
p | 2a

(
1− 1

pD

) ∏
p - 2a

(
1− 2D

pD

)
.

Now let us show the other equality. By de�nition, for every k ∈ WD
2 , the event{

gcd(N
(n)
D + k) = 1

}
=
{
(∀p ∈ Pn), min

1≤j≤D
νp(N

(n)
j + kj) = 0

}
.

Let E
(n)
p (k) denote the event that min1≤j≤D νp(N

(n)
j + kj) = 0 and F denote the complement of

a set F . With this notation,

Pn

(
ZD2
(
GCD2(N

(n)
D )
)
= 2D − 1

)
= Pn

( ⋃
j∈WD

2

⋂
k∈WD

2 \{j}

gcd(N
(n)
D + k) = 1

)
=
∑

j∈WD
2

Pn

( ⋂
k∈WD

2 \{j}

⋂
p∈Pn

E(n)
p (k)

)
.

(3.2)

The probability is independent of the choice of j, therefore, the sum over WD
2 simply becomes a

multiplication by a factor of 2D. Observe that since M = 2, the collection of events{
E

(n)
p (k)

}
k∈WD

2
are mutually exclusive.

This allows for an easy application of De Morgan's law and the inclusion-exclusion principle to
deduce that for any p ∈ P and subset W ⊆ WD

2 ,

Pn

( ⋂
k∈W

E
(n)
p (k)

)
= Pn

( ⋃
k∈W

E
(n)
p (k)

)
=
∑
k∈W

Pn

(
E

(n)
p (k)

)
.

Hence,

Pn

( ⋂
k∈W

E(n)
p (k)

)
= 1−Pn

( ⋂
k∈W

E
(n)
p (k)

)
→ 1− #W

pD
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as n→∞ by an application of (2.1). This can be combined with (3.2) and Proposition 2.1 in a
similar fashion as was done in the proof of Theorem 1.2 to complete the proof. �

3.3. Special case when M = 3. When the side-length of the `window' is 3, the prime p = 2
needs extra attention, otherwise it is similar to the M = 2 case. For every A ∈ AD3 we have that
{2, 3} ⊆ P(A). Furthermore, for every p ∈ P(A) with p > 2 we also have that p | ak if and only
if k = jA(p). For p = 2 the following patterns are possible when D = 2:X − X

− − −
X − X

 ,
− − −
− X −
− − −

 ,
− X −
− − −
− X −

 ,
− − −
X − X
− − −

 ,
where X indicates an index which is divisible by 2. In the �rst one, one of the X is divisible by
4. In the last two cases it is possible that #GA(2) = 2, otherwise, #GA(2) = 1 always.

Proposition 3.3. Trivially, Pn

(
ZD3
(
GCD3(N

(n)
D )
)
= 3D

)
= 0 for all n ≥ 3. Furthermore,

lim
n→∞

Pn

(
ZD3
(
GCD3(N

(n)
D )
)
= 3D − 1

)
=
∞∑
a=1

1

(6a)D

∏
p | 6a

(
1− 1

pD

) ∏
p - 6a

(
1− 3D

pD

)

=
1

6D

∏
p>3

(
1− 3D − 1

pD

)
.

Sketch of proof. The fact that {2, 3} ⊆ P(A) implies that
{
ZD3
(
GCD3(N

(n)
D )
)
= 3D

}
= ∅ for all

n ≥ 3. Let B(a) ∈ AD3 be such that b1 = 6a and bk = 1 for k ∈ WD
3 \ {1}. It is easy to see that

ZD3
(
GCD3(ND)

)
= 3D − 1 ⇐⇒ GCD3(ND) = B(a) for some a ∈ {1, 2, . . .}.

Hence, Corollary 1.4 implies that

lim
n→∞

Pn

(
ZD3
(
GCD3(N

(n)
D )
)
= 3D − 1

)
=
∞∑
a=1

P(Z∞ = B(a)),

which gives the �rst equality. For the second equality, the 1/6D factor comes from the fact that

6 | N(n)
D + 1. The primes p > 3 can be dealt with in a very similar fashion to the proof of

Proposition 3.1 and Theorem 1.2, we leave the details to the interested reader. �
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